Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles?1

نویسندگان

  • Lars Jørn Jensen
  • Niels-Henrik Holstein-Rathlou
چکیده

The largest peripheral blood pressure drop occurs in terminal arterioles (<40 mm lumen diameter). L-type voltage-dependent Ca2+ channels (VDCCs) are considered the primary pathway for Ca2+ influx during physiologic activation of vascular smooth muscle cells (VSMC). Recent evidence suggests that T-type VDCCs are expressed in renal afferent and efferent arterioles, mesenteric arterioles, and skeletal muscle arterioles. T-type channels are small-conductance, low voltage-activated, fast-inactivating channels. Thus, their role in supplying Ca2+ for contraction of VSMC has been disputed. However, T-type channels display non-inactivating window currents, which may play a role in sustained Ca2+ entry. Here, we review the possible role of T-type channels in vasomotor tone regulation in rat mesenteric terminal arterioles. The CaV3.1 channel was immunolocalized in VSMC, whereas the CaV3.2 channel was predominantly expressed in endothelial cells. Voltage-dependent Ca2+ entry was inhibited by the new specific T-type blockers R(–)-efonidipine and NNC 55-0396. The effect of NNC 55-0396 persisted in depolarized arterioles, suggesting an unusually high activation threshold of mesenteric T-type channels. T-type channels were not necessary for conduction of vasoconstriction, but appear to be important for local electromechanical coupling in VSMC. The first direct demonstration of endothelial T-type channels warrants new investigations of their role in vascular biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel.

AIM Using mice deficient in the CaV 3.1 T-type Ca(2+) channel, the aim of the present study was to elucidate the molecular identity of non-L-type channels involved in vascular tone regulation in mesenteric arteries and arterioles. METHODS We used immunofluorescence microscopy to localize CaV 3.1 channels, patch clamp electrophysiology to test the effects of a putative T-type channel blocker N...

متن کامل

T-type calcium channels in the regulation of afferent and efferent arterioles in rats.

L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprag...

متن کامل

Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles.

AIMS As cardiovascular disease is characterized by reduced nitric oxide bioavailability, our aim was to determine the impact of this change on the mechanism underlying vascular tone of pressurized arteries in vitro and in vivo. METHODS AND RESULTS We used pressurized cerebral and mesenteric arteries in vitro and skeletal muscle arterioles in vivo to study the contribution of L-type (1 µmol/L ...

متن کامل

[Predominant distribution of nifedipine-insensitive, high voltage-activated Ca2+ Channels in the terminal mesenteric artery of guinea pig].

We have found nifedipine-insensitive (NI), rapidly inactivating, voltage-dependent Ca2+ channels (current, NI-I(Ca)) with unique biophysical and pharmacological properties in the terminal branches of guinea pig mesenteric artery, by using a whole-cell mode of the patch-clamp technique. The fraction of NI-I(Ca) appeared to increase dramatically along the lower branches of mesenteric artery, amou...

متن کامل

Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.

In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009